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Input/Output Linearization Using Time Delay Control and Time
Delay Observer
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In this paper, input/output linearization (IOL) method using time delay control (TOC) and

time delay observer (TOO) is presented. This method enables the IOL method to be applied to

plants even when all the states of plant are not measurable or the measured plant output is very

noisy. The designed control system requires neither an accurate plant model nor the real time

computation of plant nonlinearity. Consequently, the proposed control algorithm turned out to

be computationally efficient and easy to design for nonlinear plants. In a simulation for a second

order nonlinear plant, the output followed desired response well and the control performance

appeared to be superior to IOL using TDC and numerical differentiation. Finally, in an

experiment with a pneumatic servo system, we obtained results consistent with those from the

simulation, and it was confirmed that the proposed control algorithm can be effectively used in

a real closed-loop system.

Key Words: Nonlinear Observer, Time Delay Control, Differentiation, Diffeomorphism,

Feedback Linearization, Decoupling, Transmission Zero

1. Introduction

Based on the concepts of differential geometry,

the input-output linearization (IOL) method was

developed as a base for nonlinear control system

design (Isidori et al., 1981; Isidori, 1985; Slotine

and Li, 1991). This methods involve change of

state variables into a normal form, disturbance

decoupling, feedback linearization, and transmis­

sion zero. More specifically, state variable trans­

formation is used in order to convert a nonlinear

system to a linear one, and the problem is solved

by feedback and local diffeomorphic state trans­

formation. Besides it is noted that the problem of

the IOL is closely related to the characteristics of

transmission zero.

However, in order to apply the IOL methods to

a real plant, the following three requirements
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must be considered: First, it is necessary to be

able to measure all of the state variables and up to

(r-I) -th time derivatives of the plant output,
y(r), where r denotes the relative degree of the

plant; second, an accurate plant model must be

known; and third, real-time computation of the

plant nonlinearities is required to obtain a linear

input output behavior. Unfortunately, in engi­

neering practice, there exist many cases that do

not satisfy the measurability requirement.

Furthermore, obtaining an accurate plant model

is a time-consuming and complex procedure; and

even if an accurate model is available, the burden

for real-time computation of plant nonlinearities

can be quite large depending on the complexity of

plant nonlinearities. Hence, the three require­

ments present serious limitations on the imple­

mentations of IOL to real plants.

As an alternative approach to the conventional

IOL, the IOL using time delay control (TOC)

was proposed by Youcef-Toumi and Wu (1992).

The simple algorithm neither uses state measure­

ment, nor needs an accurate plant model, nor

requires the real-time computation of plant non-
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2. Input/Output Linearization Using
Time Delay Control

When the relative degree r < n, the nonlinear

plant (I) can be transformed, using z= [y, y, "',
y(T-l)] T as a part of the new state components,

into a normal form as,

LfO(h(x)) =h(x),

L/ (h (x)) = [ tx Lt k
-

1 (h (x)) ]f(x), (3)

Lg(L/(h(x))) =[ tx L/(h(x)) ]g(X).

To provide the basis for the development of this

paper, the IOL TOC algorithm is briefly reviewed;

more detailed exposition is found in Youcef­

Toumi and Wu (1992). The nonlinear single­

input, single-output (SISO) plant considered is

described as follows:

(4)

(I)

(5)

z=ETz+B[a(x) +b(x) u],
y=Cz,

j; =w(x)

x=f(x) +g(x) u,
y=h(x),

with

In the input/output linearization procedure,

the output is differentiated with respect to time

several times until the control input u appears.

Assume that r is the smallest integer such that the
input appears in y(T), then

y(T)=LfT(h(x)) +L g(L/- 1 (h(x))) u, (2)

where L, (.) and L g (.) stand for the Lie deriva­

tive of (.) with respect to f(x) and g(x) respec­

tively,

where1 xE~nn, uEffi\ and yEffil denote the state

vector, the control input scalar, and the output

scalar, respectively. The term f(x) represents the

nonlinearities of the plant, g (x) the nonlinearities

in the input, and h (x) the nonlinear output

distribution scalar. We assume that f(x), g (x),

and h (x) are sufficiently continuous functions of

x.

linearities. Instead, it uses a time delay estimation

of plant uncertainty: that is, using the plant input

and up to r-th time derivatives of the plant

output, the total plant uncertainties are estimated

with very simple and efficient algorithm. Using

this control method, a robust control performance

against plant uncertainties can be obtained.

Nevertheless, although the IOL using TOC

(IOLTOC) can alleviate the aforementioned

requirements of state measurability, modeling,

and real-time computation, one needs a way to

estimate up to r-th derivatives of the plant out­

put. In general, either additional sensors or

numerical differentiators need to be used for the

derivatives. However, the use of derivative sensors

makes the overall system more complex and

expensive, and the use of numerical differentiators

makes the system more sensitive to measurement

noise. Therefore, unless we find out an effective
method to evaluate y(T), IOL TOC, a method

addressing practical problems associated with

IOL, can still remain impractical. Hence, an

effective evaluation of v'" is vital to real imple­
mentation.

In this paper, to overcome the problem of

derivatives measurability in IOL TOC, we pro­

pose an approach to achieve IOL by using TOC

and time delay observer (TOO). The TOO was

introduced in Chang and Lee (1997) for non­

linear SISO plant in a phase variable form.

Through this development, we want to make

IOL TOC more applicable to real plants, and

confirm that the original positive attributes of

IOLTOC can still be preserved; such as simplic­

ity, numerical efficiency, and robustness.

This paper is organized as follows. In the fol­

lowing section, the control problem is defined

and the IOL TOC is reviewed. In section 3 the

IOL method using TOC and TOO is proposed

and its stability is discussed. In Sec. 4, a simula­

tion study is undertaken to assure the validity of

the proposed control algorithm. Sec. 5 presents

the experimental results, followed by the conclu­

sion in Sec. 6.

1 x, y, u, and all other variables derived from these
are functions of time, t. For instance, x=x(t).
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with

To find such a control law, subtract (4) from (7),

then the control input results as follows:

A =[O(r-I)Xl: Ir-lJ 8 =[0(r-l1xlJ (8)
m A

mr
,m b

m
'

Amr=[amh am2' .", amr],

the control input u is bounded.

The controller using (10) works only when a
(x) and b (x) are known exactly. If there are

uncertainties in the model, the system can no

longer have linearized error dynamics as in (9).

To overcome the problem, Youcef-Toumi and

Wu (1992) proposed IOL TDC which achieves

input/output linearization of plant without the

exact knowledge of a (x); given bound of b (x) in

(4) and relative degree indices r .

The IOL TDC adopts a particularly efficient

estimation method based on the following idea

(Youcef-Toumi and Wu, 1992; Youcef-Toumi

and Ito, 1990; Hsia and Go, 1990): Firstly, since

a(x) is assumed as a continuous function, from

which it follows that, for a sufficiently small time

delay L,

a(x)~a(xU-L»)' (11)

Secondly, use (4) and ( 11). Then, one can

obtains the following estimation for a (x).

a(x)=Zr-b(x)u

~ Zr(t-L)- b (XU-L») UU-L)' (12)

Substituting this approximate estimation with b
into (10) leads to the following control law:

u=b- l[ -Zr(t-L)+ buu-L)+Amrz+bmr], (13)

where fj is a constant to be determined.

It is noteworthy that the control law, not re­

quiring an accurate plant model nor the real-time

computation of nonlinear dynamics of the plant,

is quite simple and computationally efficient.

As is clearly shown in (13), the IOL TDC

requires the estimation of state, Z and Z TO which is

the r-th derivative of the output, y. In practice,

this requirement sets nontrivial limitations on the

application of the controller to real plants. As a

solution to this problem, use of the TDO, which

is firstly introduced in Chang and Lee (1997) for

nonlinear SISO plants in phase variable form,

may be considered.

In this section, after designing the TDO for the

3. Input/Output Linearization using
Time Delay Control and Time

Delay Observer

(9)

2.1 Control law
The first step in the IOLTDC design is to select

a reference model such that the external part of

plant (4), exhibits desirable linear behavior. In

the context of model reference control, let the

desired performance be specified by means of the

response of a stable linear time-invariant refer­

ence model as

U=b(X)-I[ -a(x) +Amrz+bmrJ, (10)

which makes the tracking error satisfy (9), there­

by achieving the control objective. If, in addition,

the internal dynamics of (5) is exponentially

stable and the reference input r is bounded, then

where zEffir and lJEffin-r represent an external

part and internal part of the plant dynamics (I),

respectively. Note that the subsystem in a phase

variable form (4) is simply another expression of

(2), while the subsystem (5) does not contain the

plant input

Z=j ~ j, Er=[O(r-IIXI : I(r-I)J,
(r-I) °lxry

[
O(r - I)XlJ u:8= I ' C= I : 0lX(r-I)], (6)

a(x) =Lfr(h(x)), b(x) =Lg(Lfr-l(h(x))),

where zmEffir denotes the state vector of the

reference model, rEffil the command scalar, Am

the system matrix, and 8 m the command distribu­

tion vector.

Then the control objective is to find a control

input u that makes the state of the plant

asymptotically track the response of the reference

model, (7). In other words, the tracking error c=
Zm - Z is desired to satisfy the following error

dynamics,
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external part of the plant, (4), we present the IOL

method using TOC and TOO. In addition, the

stability of resulting system consisting of the

plant, controller and observer is discussed.

3.1 Observer design

Suppose that for the external part of the plant,

(4), an observer of the following form is avail­

able:

2=ETz+B[a (x) +b(x) u] +K (CZ- y),

( 14)

where zEffiT denotes the reconstructed state

vector, and KE ffiTX I the observer gain matrix.

Then the observation error e=z-z has an

exponentially convergent dynamics as follows:

( 15)

where an arbitrary convergence speed can be

achieved by a suitable choice of K-
In order to realize the observer, one must be

able to estimate the uncertainty, a (x) and b (x).

To this end, we have adopted from TOC (Youcef

- Toumi and Ito, 1990; Hsia and Gao, 1009) the

time delay estimation method in (12) using recon­

structed state z and an approximate estimation

with [j. Then, the resulting TOO law is as fol­

lows,

2=ET z+ aBCiT(t-L*)- [jU(t-L -, + K (CZ- y),
(16)

where L * is the time delay for TOO, and a is a

constant to be determined.

Note that the design of TOO in (16) does not

require an accurate plant model nor the computa­

tion of nonlinearities a (x) and b (x). Therefore,

the algorithm of the TOO is very simple and

computationally efficient. When the Euler inte­

gration method is used for digital implementa­

tion, the evaluation of (16) requires (3r+2)

additions and (2r +3) multiplications in each

sampling interval; the computational efficiency of

the TOO is better than that of many other non­

linear observers (Misawa and Hedrick, 1989).

The idea behind introducing the constant a is

based on the attempt by Youcef-Toumi and Wu

(1992). That is, introducing a has an effect of

using a low pass filter. Increasing a close to I

improves the performance robustness to plant

uncertainty, but makes the observer more sensi­

tive to measurement noise; while decreasing a
reverses the balance. Therefore, a careful tuning

of a is required for a good compromise between

robustness to uncertainty and sensitivity to mea­

surement noise. This point was explained in more

detail in Chang and Lee (1997).

When the TOO (together with TOC) is con­

nected to the plant, the control input is to be

obtained by using the reconstructed state z instead

of the state z. Thus, the control input U is deter­

mined as

3.2 Stability of overall system

In this section, the stability of resulting system

consisting of the plant (4), the TOC (17), and the

TOO (16) is analyzed. This analysis provides a

sufficient condition for the stability of the overall

system. Thus if the TOC and TOO are designed

so that the observer parameters K, a, and L *, and

controller parameters, Am' Bm , L. and [j meet this

condition, then the resulting system is made sta­
ble.

To the external part of plant dynamics (4), the

following model properties are inherent and are

useful in the subsequent section for the stability

analysis.

Lemma 1 : If the plant under consideration

and its controller and observer are well defined

over the interval O::;;,t5:. T, then a(x) and b(x) in
(4) are uniformly continuous functions of time

for 0::;;, i-: T. Therefore, as time delay L is suffi­

ciently small, the values of a (x., -L)' b(xu -Ll)

and U(t-L) will converge to a(x), b(x) and u .

That is a(x(t-L)=a(x)+Oa(L), b(X(t-L)=b

(x)+Ob(L) and uU-L)=u+Ou(L).

Proof : This lemma is identical to the Lemma

I of Youcef-Tourni and Wu (1992), and the

proof is clearly shown in Youcef-Toumi and Wu

(1992).

In the following two lemmas, the observation

error equation and model following error equa­

tion are derived as the functions of new observa­

tion error vector e and new model following error
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vector g : One can find similar procedures for

derivation in Chang and Lee (1997).

G L*(l-b(x) b 1)'

Oe(L*) = ;irU-L*)-;in

O/(L*) E:r-1:(t-L*) «..

with,

J:= [Gam!> Gam2, "', Ga-«. - G],
b (x) [j-l

( 18)

g=[ ~~. ]With
E r+l

e=[ ~~. ]with er+l= en
er+l

gr+l= e-.

Lemma 2 : If the observer time delay L * is

sufficiently small, then the resulting observation

error equation can be expressed as

( 19)

From Lemma I and Lemma 2, system error

Eqs. (19) and (20) yield

which can be rewritten as
with

(22)

(23)Q(o)={eOI: O~lleolll<o},

with o=2pO(ale-Kt+fJ.), where po IS an upper
bound on the norm of the symmetric and positive

definite matrix P obtained from the solutions of

Ao/P+PAoI=-I, where 11P11~Po. Furthermore,
as the time goes to infinity Ileodl goes to zero.

Proof: Define a Lyapunov function as V =

eO/Peal with P=PT and IIPII~Po. Using the
assumptions A I) and A2), V can be obtained as

follows:

V=eo/[Ao/P+PA OI] eOI+2eo/Pfol (zm)

+2eO/ POO I (L, L *) (24)

~ -lleoII12+2po(ale-Kt + fJ.) Ileolll·

Hence, for any II e 0111 that satisfies II e otll2 2 Po
(ale-Kt + fJ.) = 0, V remains negative, causing

Ileoill to converge to Q(o).
In addition, by the assumptions A2) and A3),

o decreases to zero in steady state. Therefore, as

the time goes to infinity Ileal II goes to zero. (Q.E.

where eOI= [F, gT] T. The stability of a system of

the form given in (22) is summarized in Theorem

I.

Theorem 1 : Consider the system in (22) under

the following assumptions:

A I) All the eigenvalues of A OI are different

from zero and have a negative real part:

A2) Ilfol (zm) II < a,e>",

A3) 1100 1 (L, L *) II < fJ. with zero steady state
value.

Then Ileoill is exponentially convergent to the
open domain

(20)

I

(I-a)
aL

[

o.,1 ]

f(zm) = ... ,
(I-a) .-arZmr

A1 =
0 0 0
s. 0 0- aL

[

0 0 j
A' :
2=: (I-a)'

0···--
aL

with O/(L)

I
Oe(L) = y[o, (L) +o, (L) io. (L) +U(t-L»)]-

0·2(L) _Lo (L)
e aL u

with

Lemma 3 : TDC in (17), if used for the plant

(4) with sufficiently small time delay L, has the

following model following error equation:
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4. Simulation

For this system, by defining new variable ZJ,ZZ,

and 7J as

4) The size of 8 can be reduced by a suitable

choice of the TDO gains, the TDC gains, and

time delays Land L *.

[

X3 - X Z

3

] [0]
x= ~~z + -I U, Y=XI' (25)

Xl X3 I

(26)
ZI=XI=Y'

ZZ=X3-XZ
3,

7J=Xz+ ;(3,

In order to demonstrate the effectiveness of the

proposed control system, a third order system

with stable zero dynamics is simulated. The sys­

tem is described in Siotine and Lee (1991) and

rewritten below,

Remarks:
I) This theorem provides a sufficient condition

for the stability of overall system. Thus if the

proposed control system is designed so that the

TDO gains K and a, TDC gains Am, Bm and b,
and time delay Land L * meet the condition of

A I) and A2), then the resulting system is made

stable.
2) For a stable system matrix Am, the reference

input r that satisfies the condition of A2)
includes impulse inputs, step inputs, and all of

bounded continuous inputs with constant steady

state value. An example of the reference input that

does not satisfy the condition of A2) is sinusoidal

inputs.
3) For sufficiently small time delays Land L *,

the magnitude of 0 0 1(L, L *) is very close to zero

and has zero steady state value.

D.)

response of y and yd response of x2 and x3

10

x3

5
time(sec)

control action

x2

o

4.-----~------,

0.5

-0.5'------~--------'
o105

time(sec)

Error time response

OIL-----~------.J

o

0.8

0.4

0.6

~

0.2

3

O~.----==~~-----I
2

-0.1

o

105
time(sec)

-1 L- ~ ---...J

o105
time(sec)

___ : IOLTDC using TDO case

_0.2L-----~------.-J

o

____ : IOLTDC using numerical differentiation case

Fig. 1 Simulation results of a third order system: no sensor noise case.
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we obtain equations of the form of (4) and (5) as

follows:

In the simulations, the parameter of the TDO

and TDC are determined as K, = - 100, K2 =

a(x) =L/h(x) =X/+3X23-X3'

b (x) =LgLfh(x) = I +3X23. (28)

Note that the zero dynamics, from (27), is

exponentially stable. Applying (16) and (17), the

following TDO and TDC are obtained:

i 1=Z2+K1(ZI-Y),

i 2=a[i2(t-L*)- bU(t-L*)+ bu]

+ K2(Z1- y), (29)

u= b-l
[ - i2(t-L) + bU(t-L)+amlZI

+ am2Z2+ bmr]. (30)

where

z2=a(x)+b(x)u,

~ =ZI
2-Z3,

(27)

-1000, a=0.8, amI= -4, a m2= -2, b =4, and
the time delays, L, and L * are set at 0.015 and O.

0015, respectively. The selected parameters satisfy

the stability condition of Theorem I.

In the simulations, we will show that the

proposed IOL TDC using TDO can indeed

achieve satisfactory control performance compar­

ed with the control system using numerical differ­

entiation with low-pass filter. In numerical differ­

entiation case, the cut-off frequency of the low­

pass filter is set at 100 rad / s.
Figures I and 2 show the responses of two

control systems in two different cases: without

measurement noise and with measurement noise

(random noise with magnitude of 0.1 is added to

the measurement of y). As shown in Fig. I, when

the measurement noise does not exist, the two

control systems follow the desired response Yd

well and other two states X2 and X3 are bounded.

However, the measurement noise in the plant

response of y and yd response of x2 and x3
1.5r-----------~

/' - ............ --- -~ 0.5
,

"tl "tl
~ ~

0.5 0

-0.5 '/
5 10 0 5 10

time(sec) time(sec)

Error time response control action
4

r\
Jr 2 I

0 {,
'" \ ' \ J"tl

\ r r"'" '- '\( 0~
lr' "- I

-0.1
\

\ J

'-. I -2

-0.2 -4
0 5 10 0 5 10

time(sec) time(sec)

___ : IOLTDC using TDO case

____ : IOLTDC using numerical differentiation case

Fig.2 Simulation results of a third order system: with sensor noise case (0'=0.001).
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output results in sluggish responses with the

control system using numerical differentiation

(Fig. 2). By comparison, the proposed control

system performs well and the measurement noise

does not seriously degrade the control perfor­

mance. So it is confirmed that the proposed con­

trol system is less sensitive to measurement noise

than the control system using numerical differenti­

ation with low-pass filter.

practical areas where plant dynamics is highly

nonlinear; to investigate on how it compares with

another method that does not require a model,

numerical differentiation with low-pass filter,

which is also frequently used in practice; and to

compare the control performance of the proposed

control system with a well tuned PIO control, the

control performance of which is widely recog­

nized.

I
!

/ : PIO control case

___ : IOLusing TOC with numerical ditterennaticn case

: IOLusingTDCand TOOcase

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
nmetsec)

Experimental results of three control systems
when step input is applied (with a piston
mass of 500 g).

250

Fig. 4

5. Experiments

In order to test performances of the proposed

control system in practical circumstances, the

proposed algorithm is applied to the position

control of a pneumatic cylinder system. The sche­

matic diagram of pneumatic system is shown in

Fig. 3, and the model is shown in Liu and

Bobrow (1988).

In this experiment, since the relative degree of

the plant is 3, the IOLToe requires velocity,

acceleration, and jerk to be reconstructed from

the position measurement. The purpose of this

experiment is threefold: to show that the proposed

control system can be readily applied to the

Pneumatic Cylinder System

(f) Gauge

Rodless Cylinder

Gauge
'-----------,

Air Unit

Pressure Sensor L,---+-+---,-I Pressure Sensor

Handle Valve

Fig. 3 Schematic diagram of pneumatic cylinder system.
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Figure 4 shows the responses to the step input

of r = 300 mm when the mass of piston is 500 g

used with IOLTDC, the backward difference

method was incorporated together with a low

-pass filter, the cut-off frequency of which was

carefully tuned - otherwise, the system became

unstable - to be about 80 rad / s. The reference

model is given as

The system consists of the following compo­

nents: a rodless cylinder having a stroke of 600

mm, a piston mass of 500 g, a diameter of 40

mm, and an operating pressure of 5 bar (gauge);

a flow control valve with a nominal flow rate of

700 1/min; a rotary encoder with a timing belt

that can measure linear displacement with a reso­

lution of 0.04313 mml pulse; and a DSP board

where the controller and observer are implement­

ed.

TDO was implemented with a sampling fre­

quency of 2000 Hz. For numerical differentiation

[

0
Xm= 0

-10000

1
o

-3500

0] [0]1 xm + 0 r .
-120 10000

Vel1000,-------,--~---.--_____,

500

o

2 2
-500 '----------'--------'-------'

o
-500 '-- -----'-- --'--_---.J

o

4 x105
Time(sec)

Ace 4 x104
Time(sec)

Ace

2

2

o~

-2 '-------'------'--~
o2

2

o

-2 '-------'---------'---
o

Time(sec) Time(sec)

Control In ut
2r----~"-=~=~---

Control In ut

-<5
;>

1.5

...;
<5
;>

0.5

2 2
-2 '--_--'----_--' -----'-_-----J

o
oL-- -L- L----l

o
Time(sec)

(a) Using numerical dilTerentiator

Time(sec)
(b) Using TOO

Fig. 5 Experimental results of three control systems when step input is applied (with a piston mass of 500 g).
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6. Conclusion

Fig. 6 Experimental results of three control systems
when step input is applied (with a piston
mass of 1000 g).
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